Rank-adaptive dynamical low-rank integrators for first-order and second-order matrix differential equations

نویسندگان

چکیده

Abstract Dynamical low-rank integrators for matrix differential equations recently attracted a lot of attention and have proven to be very efficient in various applications. In this paper, we propose novel strategy choosing the rank projector-splitting integrator Lubich Oseledets adaptively. It is based on combination error estimators local time-discretization with aim balance both. This ensures that convergence underlying time preserved. The adaptive algorithm works methods first-order also dynamical second-order equations, which use method its substeps. Numerical experiments illustrate performance new integrators.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonconvex Low Rank Matrix Factorization via Inexact First Order Oracle

We study the low rank matrix factorization problem via nonconvex optimization. Compared with the convex relaxation approach, nonconvex optimization exhibits superior empirical performance for large scale low rank matrix estimation. However, the understanding of its theoretical guarantees is limited. To bridge this gap, we exploit the notion of inexact first order oracle, which naturally appears...

متن کامل

Bernoulli matrix approach for matrix differential models of first-order

The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...

متن کامل

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

A new approach for solving the first-order linear matrix differential equations

Abstract. The main contribution of the current paper is to propose a new effective numerical method for solving the first-order linear matrix differential equations. Properties of the Legendre basis operational matrix of integration together with a collocation method are applied to reduce the problem to a coupled linear matrix equations. Afterwards, an iterative algorithm is examined for solvin...

متن کامل

Low rank differential equations for Hamiltonian matrix nearness problems

For a Hamiltonian matrix with purely imaginary eigenvalues, we aim to determine the nearest Hamiltonian matrix such that some or all eigenvalues leave the imaginary axis. Conversely, for a Hamiltonian matrix with all eigenvalues lying off the imaginary axis, we look for a nearest Hamiltonian matrix that has a pair of imaginary eigenvalues. The Hamiltonian matrices can be allowed to be complex o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bit Numerical Mathematics

سال: 2023

ISSN: ['0006-3835', '1572-9125']

DOI: https://doi.org/10.1007/s10543-023-00942-6